Transitive Deficiency-One Baer Subgeometry Partitions
نویسندگان
چکیده
منابع مشابه
Colourings, homomorphisms, and partitions of transitive digraphs
We investigate the complexity of generalizations of colourings (acyclic colourings, (k, `)colourings, homomorphisms, and matrix partitions), for the class of transitive digraphs. Even though transitive digraphs are nicely structured, many problems are intractable, and their complexity turns out to be difficult to classify. We present some motivational results and several open problems.
متن کاملOn transitive one-factorizations of arc-transitive graphs
An equivalent relation between transitive 1-factorizations of arctransitive graphs and factorizations of their automorphism groups is established. This relation provides a method for constructing and characterizing transitive 1-factorizations for certain classes of arc-transitive graphs. Then a characterization is given of 2-arc-transitive graphs which have transitive 1factorizations. In this c...
متن کاملFinite line-transitive linear spaces: parameters and normal point-partitions
Until the 1990’s the only known finite linear spaces admitting line-transitive, pointimprimitive groups of automorphisms were Desarguesian projective planes and two linear spaces with 91 points and line size 6. In 1992 a new family of 467 such spaces was constructed, all having 729 points and line size 8. These were shown to be the only linear spaces attaining an upper bound of Delandtsheer and...
متن کاملTransitive partitions in realizations of tournament score sequences
A tournament is an oriented complete graph, and one containing no directed cycles is called transitive. A tournament T= (V,A) is called m-partition transitive if there is a partition V=X1∪· X2∪· · · ·∪· Xm such that the subtournaments induced by each Xi are all transitive, and T Contract grant sponsor: University of Dayton Research Council (to A. H. B.); Contract grant sponsor: National Science...
متن کاملM-partitions: optimal partitions of weight for one scale pan
An M -partition of a positive integer m is a partition with as few parts as possible such that any positive integer less than m has a partition made up of parts taken from that partition of m. This is equivalent to partitioning a weight m so as to be able to weigh any integer weight l < m with as few weights as possible and only one scale pan. We show that the number of parts of an M -partition...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Combinatorial Theory, Series A
سال: 2002
ISSN: 0097-3165
DOI: 10.1006/jcta.2001.3232